October 10, 2011



# ANN ARBOR CONNECTOR FEASIBILITY STUDY Ann Arbor City Council Presentation

**October 10, 2011** 



October 10, 2011



# ANN ARBOR CONNECTOR FEASIBILITY STUDY City Council Presentation

- 1. Connector study overview
- 2. Alternative transit technologies
- 3. Study findings
- 4. Potential next steps





### What is the Ann Arbor Connector Feasibility Study?

**Study Purpose** - To determine the feasibility of advanced transit options for the city to meet growing transportation demands.

- Supplement multi-modal transportation system
- More travel options
- Convenience
- Sustainability
- Improve safety
- Economic stability and growth
- Improve overall quality of life







URS

## **Study Overview**

#### **Study Area Map**





### **Public and Agency Involvement**

- Monthly Advisory Committee Meetings
  - AATA, UM, City, DDA, WATS
- One-on-one meetings
- Focus Groups
- Newsletters
- Public Meetings
- Web Site aaconnector.com







#### **Transportation is Important to our Community**

Previous studies by the City, County, AATA, DDA, U-M and WATS have identified common themes that have led to this study:



URS







- Challenges
- Costs and Funding

URS



#### **Defining the Need – Corridor Congestion**

- Key Corridors are Congested:
  - Plymouth Road
  - State Street





Source: City of Ann Arbor 2009 Transportation Plan Update



#### Defining the Need – Corridor Congestion

- Key Corridors are Congested:
  - Plymouth
     Road
  - State Street
- Development
   Expected to
   Occur
   in Corridor



Source: URS Corporation and the WATS Travel Demand Model

#### 2010 to 2035 Employment Change







URS

#### Defining the Need – Corridor Congestion

- Key Corridors are Congested:
  - Plymouth Road
  - State Street
- Development Expected to Occur in Corridor
- Volume Forecasted to
   Increase:
  - Plymouth Road: +10%
  - Fuller Road: +11%
  - State Street: +10%
- LRTP: Widening Key Routes is Not In Plan

Source: City of Ann Arbor 2009 Transportation Plan Update





#### Defining the Need – Regional Connectivity

- Connector for intercity rail initiatives
- Support for county-wide transit
- Attract the 'choice' riders
- Park and ride intercept service





#### **Defining the Need – Transit Utilization**

 Key corridors for existing AATA Service

|                  | Service<br>Frequency | Riders per<br>Weekday |
|------------------|----------------------|-----------------------|
| Plymouth<br>Road | 15 Minute            | 2,286                 |
| State Street     | 7 Minute             | 2,771                 |

Source: AATA

- Primary Destinations
  - UM Medical Center
  - Downtown
  - UM Central Campus
- Standing loads occur frequently
- · Extra buses added to accommodate peak ridership



Source: URS Corporation and the WATS Travel Demand Model

URS



#### **Defining the Need – Transit Utilization**

- Bus Performance: Negatively Impacted by Roadway Congestion
- Currently: 25-30% of Time is Waiting for Signals!!
- More Volume More Delay:
  - Congested Conditions:
     Delay Increases by 2-3
     Times Volume Increase
- Bus Times Will Become Less Reliable





Volume-to-Capacity Ratio



#### **Defining the Need – Transit Utilization**

UM Inter-Campus Bus System Operates at Critical Capacity:

- Buses run every 2 3
   Minutes during peak periods
- Peak periods last from 8:00 am to 4:00 pm
- Buses in peak periods are standing room only
- Ridership Between North and Central Campus :
  - 30,700 Rider per Day
  - 2,100 Riders in Peak
    Hour
  - 780 riders in peak 15 Mins.
- Peak Buses between Campuses: 60 Per Hour

URS

Source: URS Corporation counts conducted September 2010



#### Total Number of Northbound and Southbound Bus Trips per Hour Between CC Little and Pierpont Commons





### Defining the Need – Community Vitality

- Better transit makes Ann Arbor a more desirable place to live and work
  - Maintain jobs
  - Accessible work force
  - Stabilize tax base
  - Affordable housing
- Transit is an alternative to building more parking









- Hours of the Day
- Frequency / Time Between Vehicles
- Fare Collection Methods

- New Route(s):
  - Uses Existing Street?
  - Separate Corridor / Guideway

- Intermodal Connectivity
  - Locations
  - Amenities

URS

• Changes to Existing Routes?

October 10, 2011











#### **Streetcars**

Little Rock, AR





Portland, OR



Tacoma, WA



URS

October 10, 2011



# Light Rail Transit (LRT)



Minneapolis, MN





Connector

URS



Dallas, TX





**Denver, CO** 



URS

### **Defining the Alternatives**

Eugene, OR



Kansas City, MO







Bus Rapid Transit (BRT)



**Cleveland**, OH

October 10, 2011



#### **Elevated Automated Guideway Transit**







Las Vegas, NV







URS

### **Defining the Alternatives**



#### Other Options Considered

#### **Heavy Rail/Commuter Rail**





#### **Personal Rapid Transit (PRT)**

**Double Decker Buses** 



URS

### **Study Findings**





RS

### **Study Findings**

- Two Area Types:
  - High Demand Core
  - Moderate Demand Shoulders
- Because there is travel demand between all Activity Centers, it makes sense to connect them





<u>RS</u>

### **Study Findings**

#### **Connector Service Concept**

- Core :
  - High Capacity
  - High Frequency
- End-to-End:
  - Moderate Capacity
  - Moderate Frequency
- Dual Service in Core





Connector





East Med. Campus



### **Study Findings**

#### Recommended End-to-End Technologies





### **Study Findings**

Engineering and Environmental Challenges

- Huron River Crossing
- Topography
- Railroad Crossings
- Roadway Crossings
- Right of way
- Historic districts
- Floodplains

These challenges are not barriers but will be considerations in the cost and design of a new transit system.

> Source: URS Corporation using City of Ann Arbor GIS data



URS



こか

### **Study Findings**

### **Capital and Operating Costs**

- Capital Costs depend on technology and alignment
  - BRT \$15-20M per mile
  - LRT \$50-60M per mile
  - Elevated \$200M+ per mile

#### Operating Costs

 Net new costs of operating and maintaining an advanced transit system would range from \$0.5 to \$1.5 M/mile annually, depending on technology and alignment





#### Source: URS Corporation



### **Study Findings**

#### Funding

- Funding for major transit investments typically comes from multiple sources
- Project could qualify for federal funding of up to 50%







RS

### **Study Findings**

#### **Summary**

- There are two distinct areas of travel demand:
  - High Demand Core warrants high capacity service
  - Moderate Demand
     Shoulders warrant
     end-to-end connection



Source: URS Corporation



### **Study Findings**

**Summary** 

• Within the High Demand Core, appropriate technologies are:



• End-to-end service should be integrated with the core service. Appropriate end-to-end technologies are:







### **Study Findings**

- The engineering and environmental challenges are not barriers but will be considerations in the cost and design of a new transit system.
- Funding for major transit investments typically comes from multiple sources



- Project could qualify for federal funding of up to 50%
- Implementing an advanced transit system would help move Ann Arbor to achieving long term transportation goals



**Next Steps** 



### **Next Steps**



# This feasibility study is the first of a number of steps

required to implement an advanced transit system.

If feasible, more detailed design studies and additional community working sessions will be required.

Identification of funding sources is a critical step to implementation.



October 10, 2011



# Questions

# **Thank You**

